What is involved in radiation protection at accelerator facilities?

February 29, 2024, 3:03PMNuclear NewsIrina Popova

Irina Popova

Particle accelerators have evolved from exotic machines probing hadron interactions to understand the fundamentals of our world to widely used instruments in research and for medical and industrial use. For research purposes, high-power machines are employed, often producing secondary particle beams through primary beam interaction with a target material involving many meters of shielding. The charged beam interacts with the surrounding structures, producing both prompt radiation and secondary radiation from activated materials. After beam termination, some parts of the facility remain radioactive and potentially can become radiation hazards over time. Radiation protection for accelerator facilities involves a range of actions for operation within safe boundaries (an accelerator safety envelope). Each facility establishes fundamental safety principles, requirements, and measures to control radiation exposure to people and the release of radioactive material in the environment.

ORNL’s Spallation Neutron Source reaches 1.7-MW power level

July 24, 2023, 3:03PMNuclear News
Upgrades to the particle accelerator enabling the record 1.7-MW beam operating power at the ORNL’s SNS included adding 28 high-power radio-frequency klystrons (red tubes) to provide higher power for the accelerator. (Photo: Genevieve Martin/ORNL)

The Spallation Neutron Source (SNS) at the Department of Energy's Oak Ridge National Laboratory set a world record when its particle accelerator beam operating power reached 1.7 MW, an improvement on the facility’s original design capability of 1.4 MW, ORNL announced on July 21. That higher power provides more neutrons for researchers who use the Office of Science user facility for materials science investigations.

Record power at the Spallation Neutron Source means more neutrons for research

March 7, 2023, 9:30AMNuclear News
A control room monitor at ORNL’s SNS displays the power level of 1,555 kW (1.55 MW), a world record for a linear accelerator used for neutron research. (Photo: Jeremy Rumsey/ORNL)

The Spallation Neutron Source (SNS) at the Department of Energy's Oak Ridge National Laboratory set a world record for accelerator-driven neutron research when its linear accelerator reached an operating power of 1.55 MW, improving on the facility’s original design capability of 1.4 MW. That higher power means more neutrons for researchers who use the facility for neutron scattering research to reach materials science advances, ORNL announced recently.